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This paper describes an intervention model for the professional development 

of middle-school classroom and special education teachers that makes use of 

videos of children’s mathematical reasoning drawn from longitudinal and 

cross sectional research. The video and related data are made available 

through the Video Mosaic Repository of Rutgers University. A goal of the 

intervention was to stimulate a change in teacher beliefs about children’s 

learning by providing video examples of children’s reasoning under conditions 

that support learning. During the yearlong intervention, teachers replicated 

instances of the video learning environments in their classrooms and analyzed 

the reasoning of their own students. To assess teacher changes in beliefs about 

learning and teaching during the intervention, pre- and post-test beliefs were 

administered. Analysis of data shows significant changes in teacher beliefs 

about learning and teaching. 
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Introduction 

 

Based on an extensive program of longitudinal and cross-sectional 

research, now in its 24th year, we have been following the collective building 

of mathematical ideas and ways of reasoning by learners. The multiple studies 

produced a large collection of video and related metadata, demonstrating 

students’ reasoning and enabling one to trace the development of reasoning of 

individual and groups of students over many years, elementary through high 

school, and in some cases beyond. The studies have produced a unique 

collection of video and related data that are available on the Video Mosaic 
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Repository
1

 at Rutgers University (Agnew, Mills, & Maher, 2010). The 

Repository is an outgrowth of our NSF funded research and development 

project: Cyber-Enabled Design Research to Enhance Teachers' Critical 

Thinking Using a Major Video Collection on Children's Mathematical 

Reasoning.
2
 

 

The Video Mosaic Repository 

 

The Video Mosaic Repository was designed to preserve the unique video 

collection amassed by The Robert B. Davis Institute for Learning at Rutgers 

University through more than two decades of research with over four millions 

dollars of grant funding from the National Science Foundation.
3
 In addition to 

preserving the video collection, new tools were developed for conducting 

design research with empirical studies that use the videos in the context of 

teacher education. The collection of videos stored in the Rutgers Repository 

provides an important resource for pre-service teacher preparation and for 

professional development with practicing teachers (See, for example, Maher, 

Palius, & Mueller, in press.).  The video and related data in the Repository 

show the reasoning of students from elementary through high-school years, 

and in several content strands, where it is possible to search the collection and 

follow particular students investigating mathematics within and across strands.  

For this paper, we illustrate how we integrate the video collection with our 

professional development work with middle-school grade teachers. Our 

examples come from the videos of the counting/probability strand and extend 

through the middle-grade combinatorics strand. We focus on the forms of 

reasoning exhibited by the children in their justifications of solutions to 

                                                             
1
 Note that the video clips that we refer to in this paper, as well as others from 

the collection, are available on the Video Mosaic Repository, which is located 

at: http://www.video-mosaic.org/ 
2
 The Video Mosaic Collaborative is a research and development project 

sponsored by the National Science Foundation (award DRL-0822204), 

directed by Carolyn A. Maher, Rutgers University. We gratefully acknowledge 

the support from the National Science Foundation and note that the views 

expressed in this paper are those of the authors are not necessarily those of the 

NSF. 
3
 See NSF awards: MDR-9053597, directed by Robert B. Davis and Carolyn A. 

Maher, REC-9814846, REC-0309062 and DRL-0723475, directed by Carolyn 

A. Maher. 
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problems that are later described.  

 

Theoretical Perspective 

 

Our approach to professional development is based on the view that 

there are necessary prerequisites in teacher knowledge that need to be in place 

in order for teachers to learn how to attend to the developing ideas and 

evolving growth in mathematical reasoning of their students. These 

prerequisites include a deep knowledge of the underlying mathematics that is 

taught, how students learn the mathematics, and how classroom environments 

can be designed to motivate and support children’s learning.  Our research has 

shown that individual learning manifests itself through the social interactions 

of others (Weber, Maher, Powell, & Lee, 2008). In the activity of problem 

solving, learners build and share ideas, and in so doing, deepen and extend 

their knowledge (Davis & Maher, 1997; Maher, Martino, & Alston, 1993). 

Within a learning community, individuals have access to the ideas of others. 

Ideas are interconnected and extended as learners work together to make sense 

of each other’s ideas and build convincing arguments for their solutions to 

problems (Maher, Powell, & Uptegrove, 2010). To create a classroom 

environment that reflects this perspective, a new view of learning is required. 

It is important that teachers believe that students are capable of thoughtful 

mathematical reasoning. Also, they need to recognize the key role they play in 

designing classroom conditions for children’s learning.  

 

Objective 

 

The professional development intervention is part of a multifaceted 

research and development project that seeks to preserve and make accessible 

videos from the unique collection made possible by research from The Robert 

B. Davis Institute for Learning at Rutgers University.  The collection includes 

video data that span more than two decades of research across grade levels, 

schools, and content domains. This paper, based on an earlier version 

presented at Hangzhou Normal University
4
, describes how the videos from the 

Rutgers Repository are integrated into a professional development program for 

                                                             
4
 An earlier version of this paper was presented at The 13

th
 International 

Conference on Mathematics Education in China (ICMEC-2010), June 25-28, 

2010, Hangzhou Normal University, Hangzhou, P.R. China. 
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teachers in order to provide some insight into how teachers’ beliefs about 

learning and teaching are influenced by studying videos of children’s learning. 

The videos illustrate children engaged in mathematical problem solving and 

offering justifications for their solutions.  Hence, our research explores the 

impact of studying videos of children’s reasoning on teacher beliefs.  

 

The Professional Development Program: A Model 

 

In order for teachers to follow the mathematical reasoning of their 

students, they too must be capable of providing convincing arguments for the 

solutions to problems. An important prerequisite of our professional 

development work with teachers is to improve their mathematical reasoning 

skills so that they are better prepared not only to study the videos of children’s 

reasoning, but also to promote and evaluate the mathematical reasoning of 

their own students.  Our approach is rooted in prior work that yielded the 

Private Universe Project in Mathematics, a series of six video workshops with 

an accompanying guide (Maher et al., 2000). 

 

Our Approach 

 

There are three intervention cycles that occur over several months, and 

each cycle has four components: (1) teachers doing mathematics, (2) teachers 

studying videos of children doing mathematics, (3) teachers implementing in 

their classrooms, and (4) teachers analyzing their students’ work.  First, we 

describe the components and then we provide examples through the cycles of 

implementation. 

 

Teachers doing mathematics. Within each cycle, new tasks are 

introduced. Across the cycles, tasks become increasingly more complex. The 

problems come from a strand of tasks that were used in research on children’s 

reasoning (Maher, Powell, & Uptegrove, 2010). They are designed to offer 

opportunities for teachers and their students to make connections between and 

among problems of similar structure and, when appropriate, to pose 

generalizations for the solutions. For each task, teachers work in small groups 

to develop solutions and convincing justifications. After working on the tasks, 

the variety of solutions are shared and discussed in workshop format. 

Attention is given to multiple approaches and varieties of forms of reasoning.   
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Teachers studying videos. Also, within a cycle, teachers study videos of 

students working on the same tasks and under similar conditions.  Emphasis is 

placed on analyzing the forms of reasoning exhibited by the students in the 

videos. The videos that are studied show impressive work of students and give 

striking attention to the powerful reasoning of children across ages, elementary 

through high school, in multiple settings. We view them as an important tool in 

helping teachers become more aware of the potential for mathematical 

reasoning of students.  

 

Teachers implementing in classrooms. Continuing with the first cycle 

of doing mathematics and studying videos, teachers implement the same task 

in their own classrooms with the students they teach. When possible, teachers 

arrange to observe the implementation of their colleagues. This component 

takes place over a few weeks. 

 

Teachers analyzing student work. The cycle is completed with an 

analysis of the forms of reasoning exhibited in the written work of their 

students.  By carefully analyzing and discussing the work of their students, 

teachers express enthusiasm that their own students are capable of producing 

reasoning similar to theirs and similar to the children in the videos. 

 

The Intervention – Some Examples  

 

The first cycle begins with a daylong workshop, whenever possible, to 

immerse teachers in the process of becoming active participants in a learning 

community. The facilitator engages teachers by inviting them to work in small 

groups to build a solution to the following task:   

 

Cycle 1, task 1. You have two colors of unifix cubes available to build 

towers.  Your task is to make as many different looking towers as possible, 

each exactly four cubes high.  Find a way to convince yourself and others that 

you have found all possible towers four cubes high, and that you have no 

duplicates. 

Teachers are provided with two colors of unifix™ cubes and papers and 

colored markers to record their solutions. Figure 1 shows teachers building 

and discussing their models of the 4-tall tower problem, selecting from two 

colors during the problem-solving workshop. 
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Figure 1.  Teachers working on tower problems. 

After working on the task for approximately one-half hour, small group 

solutions and arguments are shared. Figure 2 shows teachers sharing their 

solutions to the 4-tall tower problem using an argument by cases. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Teachers sharing tower groupings. 

 

When the sharing of solutions and convincing arguments have been completed, 

teachers are then introduced to the first video.  

 

Cycle I, video 1. This video, Stephanie and Dana, Grade 3, shows 

Stephanie and Dana working together building 4-tall towers, selecting from 

two colors, and finding a total of sixteen.  

During the workshop, the facilitator initiates a discussion about the third 

graders’ problem solving and that of the teachers. The teachers are thus 

enabled to point to comparisons between heuristics and strategies that have 

been used by both the teachers and the children; similarities that may be 
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surprising to teachers are noted. Teachers are then presented with the 

following extension problem to building towers, selecting from two colors: 

Cycle 1, task 2. Make a prediction about a solution for finding all 

possible towers 3 cubes high (without building them).  Do you think there will 

be more, fewer, or the same number of possible towers as you found for towers 

that were 4 cubes high? 

 

After making their predictions, teachers study two videos.  

 

Cycle I, video 2. This video, Meredith Removes the Top Cube, shows an 

interview of third grader, Meredith, about her problem solving with her partner, 

Jackie.  In an earlier classroom session on the 4-tall tower problem, selecting 

from red and yellow cubes, Meredith and Jackie produce an argument by cases 

to justify the sixteen towers (Maher, 2009).  The video shows the interview 

that followed with Meredith, who was asked to predict the number of towers 

there would be for 3-tall towers. She predicts that number would be the same 

number, arguing that if one removed a cube from the top of all of the sixteen, 

4-tall towers, there would remain sixteen 3-tall towers.  The interviewer asks 

Meredith to investigate her claim. As she does so, Meredith recognizes pairs of 

duplicate towers and explains why duplicates should be eliminated, then 

changes her answer to eight towers.  

 

Cycle I, video 3. This video, Stephanie Elaborates on Her Prediction, 

follows the 4-tall tower building work of Stephanie and Dana as third graders. 

They have been asked to conjecture how many 3-tall towers could be built, 

selecting from two colors. They conjecture that there would be more because 

removing a cube from the top of all of the 4-tall towers would provide extra 

cubes for building more towers, and are then encouraged by the researcher to 

investigate. In the video, Stephanie discusses her ideas with the researcher and 

modifies her prediction with an explanation.  

 

Teachers are then presented with the following extension problem to 

building towers, selecting from two colors: 

 

Cycle 1, task 3. Make a prediction for finding all possible towers that 

are 5 cubes high (without building them).   Do you think there will be more, 

fewer, or the same number of possible towers as you found for towers that 

were 4 cubes high? 
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After making their predictions, teachers are provided with unifix™ 

cubes and asked to build 5-tall towers, selecting from two colors.  

 

Cycle I, task 4. You have two colors of unifix cubes to build towers.  

Your task is to make as many different looking towers as possible, each exactly 

five cubes high.  Find a way to convince yourself and others that you have 

found all possible towers five cubes high. 

 

After working on the task for approximately 45 minutes, small group 

solutions and arguments are shared. This task tends to elicit reasoning by cases, 

although sometimes an inductive argument is provided.  Teachers then study 

another video. 

 

Cycle 1, video 4. This video, Stephanie and Dana, grade 4, features the 

girls as seen before, but now as fourth graders, engaged in building 5-tall 

towers when selecting from two colors. Working together on the task, they 

reach a solution with 32 towers.     

The teachers then discuss the girls’ problem solving shown on the video, 

making comparisons and contrasts with what the girls do. Teachers discover 

that they identify the same kinds of patterns and groupings that children 

working on this task also identify and name, such as elevator, staircase, 

opposites and cousins (Maher, Sran, & Yankelewitz, 2010a). Teachers are then 

shown another video, featuring Milin sharing with some of his fifth-grade 

classmates an inductive argument he initially had built as a fourth grader 

(Maher, Sran, & Yankelewitz, 2010b) 

 

Cycle 1, video 5. This video, Milin Shares His Inductive Argument, 

shows several children, now fifth graders, working on a new task that gives 

opportunity to extend their thinking about the towers. The video illustrates 

how ideas can travel in a classroom through the sharing of an inductive 

argument for building towers of any height, n-tall, selecting from two colors.  

 

          Cycle 1, classroom implementation. After doing mathematics and 

studying videos, the teachers are well prepared to engage their own students 

on the 4-tall towers task, selecting from two colors.  As the children work in 

small groups on the problem in their classroom, teachers listen to children’s 

explanations in order to follow their reasoning. Figure 3 shows a sixth-grade 

teacher examining the tower models built by two of her students.  
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Figure 3. Teacher studying students' models. 

Cycle 1, teachers analyze students’ work. After teachers implement 

the task in their classrooms, they bring samples of their students’ work to share 

and analyze with their colleagues at the next workshop. Students’ work tends 

to display a variety of representations and notations, as well as multiple forms 

of reasoning. Figure 4 shows the sixteen-tower solution of a student who 

represented the towers with B (blue) and Y (yellow) symbols. Three groups are 

illustrated:  all one color, two of each color, and exactly one (and 3) of a color.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Teacher sharing student notation. 

Figure 5. Shows a student’s use of tower drawings and symbols to 

indicate groupings similar to those illustrated in Figure 4.  
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Figure 5. Teacher sharing student groupings. 

Cycles II and III follow a similar structure to Cycle I, with different 

tasks and videos.  For the second cycle, the tasks are a class of pizza problems; 

that is, determining how many pizzas it is possible to make when selecting 

from various number of toppings and under a variety of constraints. Based on 

findings from the longitudinal study about the representations that students 

created and the forms of reasoning that emerged when students had to grapple 

with the complexity of pizza with halves (Maher, Sran, & Yankelewitz, 2010c), 

we suggest introducing the pizza problems in the following sequence: 

Cycle II, task 5.  A local pizza shop has asked us to help them design a  

form to keep track of certain pizza sales. Their standard “plain” pizza 

contains cheese. On this cheese pizza, one or two toppings could be added to 

either half of the plain pizza or the whole pie. How many choices do customers 

have if they could choose from two different toppings (sausage and pepperoni) 

that could be placed on either the whole pizza or half of a cheese pizza? List 

all possibilities. Show your plan for determining these choices. Convince us 

that you have accounted for all possibilities and there could be no more. 

 Cycle II, task 6. The local pizza shop was so pleased with your help on  

the first problem that they have asked us to continue our work. Remember that 

they offer a cheese pizza with tomato sauce. On this cheese pizza, one or more 

of the following toppings could be added to either half of the plain pizza or the 

whole pie: peppers, sausage, mushrooms, and pepperoni. How many choices 

does a customer have? List all the possible choices. Find a way to convince 

each other that you have accounted for all possible choices. 
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 Cycle II, task 7. Capri Pizza has asked you to help design a form to 

keep track of certain pizza choices.  They offer a standard “plain” pizza with 

cheese and tomato sauce.  A customer can then select from the following 

toppings: peppers, sausage, mushrooms, and pepperoni.  How many choices 

for pizza does a customer have?  List all possible choices.  Find a way to 

convince each other than you have accounted for all possibilities. 

 

After the teachers engage in doing mathematics through these tasks, 

there is video to be studied of children working on the pizza problems and 

talking about how to solve them. 

 

Cycle II, video 7. This video, Exploring Pizza Problems in Grade 5, 

show fifth grade students working on the pizza problems over several 

classroom sessions. There is much debate as they search for good ways to 

represent the various options for pizzas with halves when selecting from two 

toppings. They struggle with this complicated task, yet their work on it gives 

them insights for approaching the other pizza problems that they do next. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Teacher sharing student solution to pizza problem. 

 

Similar to the first cycle, after doing and discussing their solutions to the 

problem with their colleagues and watching videos of children doing the same  

problem, teachers return to their classrooms and engage their own students in 

the same task.  Later, they return to a follow-up workshop with samples of 

their students’ work. Figure 6 shows a teacher sharing the argument of Maggie 
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and Sam, two middle school students. They organize their pizza choices using 

a case argument for 1, 2, 3 and 4 toppings.  

 

 Another example of student work shared by a teacher is given in Figure 

7. To account for all 16 choices of pizza, a 0-1 notation was used in table 

format to record the absence or presence of a topping.  Following discussion 

of students’ work, teachers study another video. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Teacher shares students' zero one notation for pizza problem. 

 Cycle II, video 8. This video, Brandon Invents Isomorphism, is an 

interview with 10-year old Brandon that is conducted after he has worked with 

a partner in the classroom on some problem-solving tasks, most recently the 4-

topping pizza problem. Brandon uses a 0-1 notation to account for all pizza 

choice. When the researcher asks Brandon if this problem reminded him of 

any others, he refers to the towers problem, saying it is “the same”. He then 

rebuilds his solution set of towers to demonstrate their equivalence.  

The teachers then begin the third cycle and are given Tasks 8 and 9 to 

work on with a partner or small group. After discussion of their problem-

solving strategies and solutions, they watch Cycle III, Video 9.  The tasks and 

video are described below.  

 

Cycle III, task 8. Find all possible towers that are three cubes tall, 

selecting from cubes available in three different colors. Show your solution 

and provide a convincing argument that you have found them all. 
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Cycle III, task 9. Ankur’s Challenge: Find all possible towers that are 

four cubes tall, selecting from cubes available in three different colors so that 

the resulting towers have at least one of each color.  Show your solution and 

provide a convincing argument that you have found them all.   

 

Cycle III, video 9. This video, Romina’s Proof, shows a group of five 

tenth-grade children working on the Ankur’s challlenge task. In the episode, 

five students begin their work as a group of two and a group of three. The 

video clip focuses on three students - Romina, Jeff and Brian - who develop a 

notation to represent the three colors and build an argument that is shared by 

Romina to the entire group, convincing them of their solution of thirty-six 

towers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Teacher shares students’ solution for Ankur's challenge. 

 

Again, similar to the first cycle, after doing and discussing their 

solutions to the problem with their colleagues, and watching videos of children 

doing this same task, teachers go back to their classrooms and engage their 

own children in Tasks 8 and 9.  They return to a follow-up workshop with 

samples of student work and share the solutions and arguments used by their 

children. In our study with middle school teachers, two sixth graders solved 

the Ankur’s challenge problem using a strategy that was similar to tenth-grader 

Romina, as shown in the Romina’s Proof video. Their written solution was 

shared by a teacher as illustrated in Figure 8. 
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In sum, the yearlong intervention engaged teachers and their students in 

thoughtful mathematical problem solving and reasoning. A question of interest 

to us was whether their participation in the intervention had an influence on 

previously held beliefs about what mathematics children are capable of 

learning and what role a teacher can have in the process. 

 

Teacher Beliefs Study 

 

It was of interest to investigate whether teacher beliefs about learning 

and teaching were durable during this intervention. An objective was to track 

changes, if any, in teacher held beliefs during the course of the intervention. 

Our expectation was that learning to attend to forms of reasoning they use in 

problem solving and to be more attentive to children’s reasoning by studying 

videos might affect certain held beliefs. We were particularly interested in 

whether there would be differences between special education and regular 

classroom teachers in terms of the expectations about student learning and the 

conditions that teachers can create to influence children’s learning.  To this 

end, a study was designed to investigate whether certain teacher beliefs about 

children’s learning and teaching might be transformed over the yearlong 

intervention.   

Method 

Participants 

The study consisted of 20 middle school classroom and special 

education teachers, from two middle schools, in a school district in New Jersey. 

The regional school district is diverse in the population of students it serves. 

All twenty teachers participated in a year long, professional-development 

workshop that was a component of a comprehensive design research study 

funded by the National Science Foundation
5
. The professional development 

intervention model is described in detail in this paper.  

 

Instruments 

Prior to and after the intervention, the teachers were given a Beliefs 

Inventory as pre and post-test assessment of their beliefs about children’s 

                                                             
5
 This research took place in year two of a design research study funded by 

National Science Foundation (award DRL-0822204), directed by Carolyn A. 

Maher. 
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learning and conditions for effective teaching. The Beliefs Inventory included 

items that assessed beliefs about how mathematics is learned and how teachers 

influence (or not) children’s learning. For this report, we discuss the subset of 

teacher beliefs that changed during the yearlong intervention (See Table 1). 

Also, after each session, teachers were asked to evaluate their workshop 

experience in terms of learning and relevance.  

 

Results 

 

Data from teacher evaluations and Beliefs Inventory give some insight 

into the value of the intervention. Teacher evaluations after each workshop 

session were uniformly and consistently positive, suggesting that they found 

their participation worthwhile and related to their teaching. 

Table 1 identifies a subset of 13 of the 34 items in the Beliefs 

Assessment Inventory that were changed. The table examines post-test belief 

scores of participating teachers for those items in which the pre-test Belief 

response was Uncertain, Disagree or Strongly Disagree. It should be noted that, 

on the average, 64.4% of the participating teacher post-test items indicated 

growth. In contrast, on the average, only 4.0% of the teacher responses 

indicated negative growth. For the remaining 32%, on the average, there was 

no change in beliefs. 

 

Table 1 

Post-Test Change in Participating Teacher Beliefs Responses for Beliefs 

Inventory Items with a Pre- Test Score of Uncertain, Disagree, or Strongly 

Disagree 

 

 

Belief Inventory Item 

N* % 

Post-

Test 

Growth 

% 

 Post-

Test 

Decline 

% 

Post-Test 

No Change 

Inverse of: Collaborative learning is 

effective only for those students who 

actually talk during group work. 

7 100% 0% 0% 

Understanding math concepts is more 

powerful than memorizing procedures. 

5 100% 0% 0% 

All students are capable of working on 

complex math tasks. 

10 80% 10% 10% 

Students are able to tell when their 4 75% 0% 25% 
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teacher does not like mathematics. 

Learners generally understand more 

mathematics than their teachers or 

parents expect 

18 66.7% 0% 33.3% 

Collaborative groups work best if 

students are grouped according to like 

abilities. 

18 66.7% 0% 33.3% 

Inverse of Young children must master 

math facts before starting to solve 

problems. 

14 64.3% 0% 35.7% 

Math is primarily about communication. 10 60% 10% 30% 

Learners generally have more flexible 

solution strategies than their teachers or 

parents expect. 

12 58.3% 8.3% 33.3% 

Teachers should intervene as little as 

possible when students are working on 

open-ended mathematics problems. 

12 58.3% 16.7% 25% 

Inverse of: Teachers should make sure 

that students know the correct procedure 

for solving a problem 

19 57.9% 0% 42.1% 

Inverse of: Math is primarily about 

learning the procedures. 

11 45.5% 0% 54.5% 

Inverse of: The idea that students are 

responsible for their own learning does 

not work in practice. 

9 44.4% 11.1% 44.4% 

     

TOTAL  149 64.4% 4.0% 31.6% 

*N = Number of Participating Teachers who scored Undecided, Disagree, or 

Strongly Disagree to the Beliefs Inventory Question in the leftmost column 

 

Table 2 

Overall Change in Participating Teacher Beliefs for Experimentally 

Aligned Items on the Beliefs Assessment Inventory 

 

Belief Assessment Inventory Item 

Mean 

Pre-

Test 

Score 

Mean 

Post-

Test 

Score 

Mean 

Growth 

Student-

t Ratio 

Significa

nt Level 

Inverse of Collaborative learning is 

effective only for those students 

who actually talk during group 

work. 

2.25 1.9 0.35 1.32 0.10 

Understanding math concepts is 1.85 1.4 0.45 1.76 0.05 
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more powerful than memorizing 

procedures. 

All students are capable of 

working on complex math tasks. 

2.75 2.35 0.40 1.5 0.07 

Students are able to tell when their 

teacher does not like mathematics. 

2.0 1.65 0.35 1.5 0.07 

Learners generally understand 

more mathematics than their 

teachers or parents expect 

3.1 2.45 0.65 3.32 <0.01 

Collaborative groups work best if 

students are grouped according to 

like abilities. 

3.85 3.0 0.85 3.1 <0.01 

Inverse of Young children must 

master math facts before starting to 

solve problems. 

3.26 2.89 0.37 1.38 0.09 

Math is primarily about 

communication. 

2.65 2.35 0.30 1.83 0.04 

Learners generally have more 

flexible solution strategies than 

their teachers or parents expect. 

2.7 2.25 0.45 2.65 <0.01 

Teachers should intervene as little 

as possible when students are 

working on open-ended 

mathematics problems. 

2.85 2.55 0.30 1.3 0.10 

Inverse of Teachers should make 

sure that students know the correct 

procedure for solving a problem 

3.8 3.3 0.50 2.24 <0.01 

Inverse of Math is primarily about 

learning the procedures. 

2.5 2.2 0.30 2.35 0.01 

Inverse of The idea that students 

are responsible for their own 

learning does not work in practice. 

2.4 2.1 0.30 1.83 0.04 

Overall 13 Item Composite Score* 2.77 2.34 0.425 5.93 <0.0001 

*  A 13 item composite score is calculated for each participating teacher as the 

average of the teacher’s responses to each of the 13 Beliefs items listed in this table. 

 

Table 2 shows the overall pre-test and post-test mean Belief scores for 

the subset of 13 belief items that are aligned with the intervention. The scores 

are interpreted as 1 (strongly agree), 2 (agree), 3 (uncertain), 4 (disagree), and 

5 (strongly disagree). A composite pre and post beliefs score was calculated 

for each participating teacher as the average of the teacher’s responses to these 

13 beliefs items. The overall composite pre-test and post-test Beliefs Inventory 
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scores, on the average, reveal a highly statistically significant growth in 

Beliefs of 0.425. This result may be interpreted as follows: The average pre-

test Beliefs score of 2.77 revealed that for these 13 inventory items a 

participating teacher, on the average, scored approximately three-quarters of 

the way between 2 (agree) and 3 (uncertain). On the post-test, the participating 

teacher’s average score shifted 0.425 units closer to 2 (agree). That is, the 

mean post-test Beliefs Inventory score shifted away from 3 (uncertain) to 

approximately 55% of the way toward 2 (agree). 

Table 3 compares the Beliefs mean post-test growth for the 13 aligned 

Beliefs Assessment Inventory items and the 21 non-aligned Beliefs 

Assessment Inventory items. The 21 non-aligned items have a statistically 

non-significant post-test gain of 0.048 compared to a highly significant post-

test gain of 0.425 for the 13 aligned inventory items 

 

Table 3 

Comparison of Composite Participating Teacher Belief Scores for Aligned 

and Non-Aligned Experimental Program Belief Assessment Inventory 

Items 

Belief 

Assessment 

Composite Mean 

Score 

Mean 

Pre-Test 

Score 

Mean 

Post-

Test 

Score 

 

Mean 

Growth 

Student 

Ratio 

 

Significance 

Level 

Average of 13 

Aligned Belief 

Assessment 

Items 

2.77 2.34 0.425 5.93 <0.0001 

Average of 21 

Non-Aligned 

Belief 

Assessment 

Items 

2.18 2.13 0.048 0.85 N.S. 

 

Figure 9 compares the participating teacher growth distribution of the 

aligned and non-aligned mean Beliefs Inventory items responses. It should be 

noted that for the aligned Beliefs Inventory items, on the average, less than 

10% of the participating teachers did not exhibit any positive growth; in 

contrast, for the non-aligned Beliefs Inventory items over 50% (or precisely 

52.6%) of the participating teachers failed to exhibit any positive growth with 

regard to the non-aligned Belief Inventory items. 

Figure 10 is a graph of the mean 13-item aligned post Beliefs items 
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versus the corresponding pre Beliefs items for each of the 20 participating 

teachers. The graph contains separate linear regression plots for the 

participating regular and special education teachers.  These graphs indicate 

similar growth in post Beliefs Inventory results for these two groups of 

teachers. The line y = x (or Post Beliefs Assessment mean score = Pre Beliefs 

Assessment mean score) is included in the graph to show the magnitude of 

Beliefs post-assessment growth as a function of the participating teacher’s 

mean Beliefs pre- assessment score. Note that the vertical distance between 

the red line and the green line at any point on the pre-assessment axis is the 

corresponding expected mean post-assessment growth for regular classroom 

participating teachers. Similarly, the vertical distance between the red line and 

the blue line at any point on the pre-assessment axis is the corresponding 

expected mean post-assessment growth for special education classroom 

participating teachers. 

 

Aligned Beliefs Assessment Item 

Composite Growth Scores 

Non-Aligned Beliefs Assessment 

Items Composite Growth Scores 

  

-0.5

-0.25

0

0.25

0.5

0.75

1

2 4 6

Count

.05 .15 .25

Probability

-0.5

-0.25

0

0.25

0.5

0.75

1

2 4 6 8

Count

.10 .20 .40

Probability



20                                            Using Videos as Tools 
 

 

 

Figure 9. Distribution of participating teacher growth for aligned and 

non-aligned beliefs assessment item composite scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quantiles 

      

100.0% maximum 1.000 

99.5%  1.000 

97.5%  1.000 

90.0%  1.000 

75.0% quartile 0.615 

50.0% median 0.462 

25.0% quartile 0.154 

10.0%  0.000 

2.5%  -0.077 

0.5%  -0.077 

0.0% minimum -0.077 
 

Quantiles 

      

100.0% maximum 0.5238 

99.5%  0.5238 

97.5%  0.5238 

90.0%  0.5238 

75.0% quartile 0.2381 

50.0% median -0.0476 

25.0% quartile -0.1429 

10.0%  -0.2381 

2.5%  -0.2857 

0.5%  -0.2857 

0.0% minimum -0.2857 
 

Moments 

    

Mean 0.4251012 

Std Dev 0.3123246 

Std Err Mean 0.0716522 

upper 95% Mean 0.5756368 

lower 95% Mean 0.2745656 

N 19 
 

Moments 

    

Mean 0.047619 

Std Dev 0.2433287 

Std Err Mean 0.0558234 

upper 95% Mean 0.1648997 

lower 95% Mean -0.069662 

N 19 
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Figure 10. Participating regular classroom and special ed teachers - post 

vs pre Mean 13-Aligned Item Belief Inventory Scores.* 

 

Discussion 

 

Teachers were actively engaged in building justifications to problems, 

having available concrete objects (unifix™ cubes) to spontaneously construct 

representations of tower arrangements. In their activity, they discovered 

patterns and organizations that enabled them to classify towers according to 

some scheme.  Their actions resulted in ways of organizing the towers.  While 

initially not always producing complete organizations, teachers eventually 

came to build thoughtful and convincing arguments for their solutions. In their 

problem solving, they integrated the ideas of others, as was evidenced by their 

written work and explanations.  

Their active engagement as mathematical learners was, in our view, a 

necessary, but not a sufficient prerequisite for understanding the reasoning of 

children. In order to understand students’ ways of doing mathematics, the 

studying of videos of children’s mathematical activity provides an entry and an 

enticement. The videos show problem-solving behavior not unlike that of the 

adult learners. They indicate the benefit of activity and reflection in children’s 

learning. Given the opportunity for experimental teaching, by observing and 

working with children in their own classrooms and working with colleagues to 

analyze their students’ reasoning, teachers can learn to become more observant 

of the mathematical behavior and forms of reasoning of children that naturally 

evolve in the process of problem solving. Steffe (2010) emphasizes the 

importance of teachers’ learning to engage in children’s productive 

mathematical thinking by engaging in teaching experiments and working as 

teacher-researchers. We suggest that this engagement played an important role 

in influencing the beliefs of a significant number of participating teachers.  

Our intervention suggests that a study of carefully selected videos of 

children doing mathematics can be an effective medium for helping teachers 

become more aware of the untapped potential of children to build 

mathematical ideas and ways of reasoning.  Our approach sought to provide 

teachers with videos as tools for becoming more attentive to the developing 

 Expected Results if No Change in Teacher’s Post – Test Scores 

Linear Fit:  "Reg Ed" 

Linear Fit: "Spec Ed" 
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ideas of children. Further, it challenged teachers to examine strongly held 

earlier beliefs about how children learn and reflect on their own beliefs and 

behavior as classroom teacher. The children in the videos were not told how to 

solve the problems they were invited to work on; nor were they shown how to 

reason. Yet, using each other as a resource and the tools provided, they were 

successful.  

It is interesting to note is that belief changes were exhibited by both 

regular and special education teachers, and that no differences were found, 

suggesting that students identified as struggling also can be successful in 

building meaningful solutions to problems. Changes in beliefs about how 

mathematics is learned and how teachers can influence children’s learning may 

be a prerequisite to making changes in instructional methods. However it is 

not sufficient.  

Actual or perceived obstacles can impede changes in practice even for 

teachers who realize the benefits of alternative approaches. Change requires 

the support of school administrators, who are accountable for the improvement 

of test scores, and parents who need to understand the benefits to their own 

children (Mueller, Yankelewitz, & Maher, 2010). Earlier research has shown 

that interventions that seek to establish understanding of mathematical 

concepts and that focus on problem solving do not affect students’ 

computational competence (Maher, 1991). Educating the stakeholders about 

the necessity for children to build a strong foundational understanding of 

mathematics throughout the grades in order to continue a successful later study 

of mathematics in high school and beyond is a significant challenge (Francisco 

& Maher, 2005; Maher, 2005).  

There are clearly limitations to the study.  More research is needed to 

understand the complex relationship between mathematical knowledge, 

student reasoning and the impact of video based interventions.  Also, follow 

up study in classrooms for growth in children’s reasoning is also worthy of 

study. 
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